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Abstract. Field equations with general covariance are interpreted as equations for a target

space describing physical spacetime co-ordinates, in terms of an underlying base space with
conformal invariance. These equations admit an infinite number of inequivalent Lagrangian

descriptions. A model for reparametrization invariant membranes is obtained by reversing the
roles of base and target space variables in these considerations.

1. Introduction

A characteristic feature of the classical equations of general relativity is the property of
general covariance; i.e that the equations are covariant under differentiable re-definitions of
the spacetime co-ordinates. In the first of a series of papers investigating a class of covariant
equations by Govaerts and the first author, which we callgigersal field equationfl—

5] we floated the idea that these equations could be employed as a model for spacetime
co-ordinates. It is one objective of this paper to explore this idea in somewhat greater
depth. This is a purely classical discussion of a way of describing a co-ordinate system
which is sufficiently flexible to admit the general class of functional redefinitions implied

by covariance. It has nothing to do with quantum effects like the concept of a minimum
compactification radius due to T duality which rules out the the notion of an infinitely
precise point in spacetime. Here the discussion will remain entirely classical and will
explore the idea that the spacetime co-ordinate® idimensions may be represented by

flat co-ordinates inD 4+ 1 dimensions, which transform under the conformal group i 1
dimensions. There are, however, two ways to implement general covariance; one by the
use of covariant derivatives, and the other by exploiting properties of determinants. In a
second application the universal field equations may be regarded as describing membranes,
by reversing the roles of fields and base co-ordinates. Then the covariance of fields becomes
the reparametrization invariance of the new base space.

2. Multifield UFE

SupposeX (x;)4, a =1,...,D, i =1,..., D+ 1 denotes a set ab fields, inD + 1
dimensional space. They may be thought of as target space co-ordinates which constitute a
§ Currently on leave of absence at TH Division, CERN, Geneva, Switzerland. E-mail: david.fairlie@durham.ac.uk

I On leave of absence from Institute of Mathematics, Tereshchenkivska Street 3, 252004 Kiev, Ukraine. E-mail:
rzhdanov@apmat.freenet.kiev.ua

0305-4470/97/010245+05$19.5@¢) 1997 I0OP Publishing Ltd 245



246 D B Fairlie and R Zhdanov

mapping from aD-+1 dimensional base space co-odinatized by the independent vaniables
Introduce the notatioX{ = 9X¢/dx;, X;’j = BZX“/ax,-axj. In addition, letJ, denote the
Jacobiand (X%, X°, ..., XP)/a(x1, ..., % ..., xp+1) Wherex; is the independent variable
which is omitted inJ;,. Now suppose that the vector fiekd” satisfies the equations of
motion

> JidiXg, = 0. (2.1)
i,k

This is a direct generalization of the Bateman equatio®téields in D + 1 dimensions,
[1], and may be written in terms of the determinant of a bordered matrix where the diagonal
blocks are of dimension® x D andD + 1 x D + 1 respectively as

9X4
axk

ayb a2yc
The coefficients of the arbitrary constant parameterset to zero reproduce the equations

(2.1). The solutions of these equations can be verified to possess the property that any
functional redefinition of a specific solution is also a solution; i.e. the property of general
covariance. A remarkable feature of (2.1) is that the equations admit infinitely many
inequivalent Lagrangian formulations. SuppaSedepends upon the field§¢ and their

first derivativesX? through the Jacobians subject only to the constraintfitat’, J;) is a
homogeneous function of the Jacobians, i.e.

det — 0. 2.2)

D+1
> Jj% =L. (2.3)
j=1 %
Then the Euler variation of with respect to the field* gives
oL 9 oL
aXe  Bx; X7

oL 3 AL 3J;
T AX9 3x; 3J; 9X¢
AL 2L aJ; ., oL %, 2L 9J; dJx
= _ xb_ = X7 —

aXe  9XPaJ; aX¢T' 9J; 9XeaXxPT 97,00, 0X¢ 0XP
The usual convention of summing over repeated indices is adhered to here. Now by the
theorem of false cofactors

D+1 5, ,

_,; axs X! = 8ap i (2.5)
Then, exploiting the homogeneity of as a function ofJ, (2.3), the first two terms
in the last line of (2.4) cancel, and the tertd/dJ;)(3%J;/0X¢9X}) X", vanishes by
symmetry considerations. The remaining tett.L/dJ;3J)(8J;/3X%)(dJx/0X2 X" ), may
be simplified as follows. Differentiation of the homogeneity equation (2.3) gives

D+1 325

Jiy =0. 2.6
> arn (2.6)

k=1

X0, (2.4)

But since) ", JyX{ = 0, Va, together with symmetry, this implies that the linear equations
(2.6) can be solved by

oL = X!d"X! 2.7)
3500 T '
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for some functionsi“’. Inserting this representation into (2.4) and using a similar result to
(2.5);

D+1

aJ;
Y e X) = b (2.8)
= oX|
Then, assuming®* is invertible, as is the generic case, the last term reduc® fo/; J, X
which, set to zero, is just the equation of motion (2.1)

2.1. lteration

This procedure may be iterated; given a transformation described by the equation (2.1),
from a base space db + 2 dimensions with co-ordinates to to a target space db + 1

with co-ordinatest; which in turn are used as a base space for a similar transformation to
co-ordinatesX;, k = 1... D the mapping fromD + 1 dimensions taD is given in terms

of the determinant of a bordered matrix of similar form to (2.2), where the diagonal blocks
are of dimension®d x D and D + 2 x D + 2 respectively;

axX“

, Bxkz
I
The equations which form an overdetermined set are obtained by requiring that the
determinant vanishes for all choices bf Further iterations yield the multifield UFE,

discussed in [3], and the Lagrangian description is given by an iterative procedure.

det — 0. 2.9)

2.2. Solutions

There are various ways to approach the question of solutions. Consider the multifield UFE;

0 ... © X3 . X:
o ... O X" .. X"
det Y1 Yd =0 (2.10)
Xy oo XU Y lamXo YL XE
Xxd e XXL’ Z?:l )\'iXi]_X(/ M 27=l )"inc(,xd
wheres, ..., A, are arbitrary constants, and the functioxik ..., X" are independent of

Ai. The equations which result from setting the coefficients of the monomials of degree
d —n in A; in the expansion of the determinant to zero form an overdetermined set, but, as
we will show, this set possesses many nontrivial solutions.
The equation (2.10) may be viewed as a special case of the MongeAreguation in
d + n dimensions, namely
d+n
=0. (2.11)
i,j=1
Equation (2.10) results from the restrictionoto the form

9%u
0y, 0y

YivYj

det

u(yk):u(xl,...,xd,kl,...,kn)=ZAiXi (2.12)
i=1

1 This calculation without the(“ dependence of the Lagrangian can already be found in [1]; the new aspect here
is the extension to include the fields themselves, following the single field example of [6].
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where we have set
Yi = X l:].,,d yj+d:)‘j ]=1,,n (213)

Now the Monge—Amgpre equation is equivalent to the statement that there exists a functional
dependence among the first derivativgs of u of the form

Fuy,...,uy,.)=0 (2.14)

where F is an arbitrary differentiable function. Methods for the solution of this equation
are known [7, 8]. Returning to the target space variatdésthis relation becomes

n n
. A
F X;x,-x;q,...,;x,-x;d, x4 x| =o (2.15)
1= 1=
N e, s e’ N —— e’
w1 Wq

3. Exact solutions of the UFE

3.1. Implicit solutions

The general representation of a solution of this set of constraints which do not depend upon
the parameters’ evades us; however, there are two circumstances in which a solution may
be found. In the first case a class of solutions in implicit form may be obtained by taking
F to be linear in the first/ argumentsy;. Then

d
F=Y fi(x* ... . X" =0. (3.16)
i=1

It can be proved that this is the generic situation for the cases of two and three fields. In
general, provided there are terms lineanjnin F, as theX’ do not depend upoh;, one
expects that as a minimal requirement the termsg ilmear in A; will vanish for a solution.
Equating each coefficient of in (3.16) to zero we obtain the following system of partial
differential equations

d
Y AL XX =0 i=1,...,n. (3.17)
i=1

The general solution of these equations may be represented in temmarbitrary smooth
functions R/, where
Rj(fdxl — flxd, ey fdxd_l — fd_lxd, Xl, ey X”) =0. (318)

The solution of these equations f&f gives a wide class of solutions to the UFE.

3.2. Explicit solution

There is a wide class of explicit solutions to the UFE. They are simply given by choosing

X/(x1, ..., xq) to be a homogeneous function of of weight zero, i.e.
J )
X’
E x;— =0 j=1...,n (3.19)
Bxk
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The proof of this result depends upon differentiation of (3.19) with respect to;thé
particularly illuminating example is the case of spherical polarg] #a 3, n = 2 take

X'=¢=tan? s X?=0=tan? (x2> ) (3.20)

Then these co-ordinates satisfy (2.9).

4. Conclusions

A wide class of solutions to the set of UFE which are generally covariant has been obtained.
In order to adapt the theory to apply to possible integrable membranes, it is necessary to
interchange the roles of dependent and independent variables, so that general covariance
becomes reparametrization invariance of the base space [2]. In order to invert the dependent
and independent variables in this fashion, it is necessary first to augment the dependent
variables by some additional — n fields Y, (x;), then consider the; as functions of

X;, i =1...n. Although, in principle,x; could also depend upon the artificial variables

Y, k =1...d —n, we make the restriction that this does not occur (see [2] for further
details). In this case the variablesplay the role of target space for aAbrane, dependent
uponn co-ordinatesx’/. Since it is fully reparametrization invariant, it may play some part

in the further understanding of string theory, but this is by no means clear.

Acknowledgment

RZ would like to thank the Alexander von Humboldt Stiftung for financial support.

References

[1] Fairlie D B, Govaerts J and Morozov A 199%ucl. PhysB 373214-32
[2] Fairlie D B and Govaerts J 1992hys. Lett281B 49-53

[3] Fairlie D B and Govaerts J 1992 Math. Phys33 3543-66

[4] Fairlie D B and Govaerts J 199B Phys. A: Math. Ger26 3339-47

[5] Bateman H 192%roc. R. SocA 125598-618

[6] Mulvey J A 1996J. Phys. A: Math. Gern29 3247-56

[7] Fushchid V | and Zhdane R Z 1989Phys. Repl172123-74

[8] Fairlie D B and Lezne A N 1995J. Geom. Physl6 385-90



