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A model for classical spacetime coordinates
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Abstract. Field equations with general covariance are interpreted as equations for a target
space describing physical spacetime co-ordinates, in terms of an underlying base space with
conformal invariance. These equations admit an infinite number of inequivalent Lagrangian
descriptions. A model for reparametrization invariant membranes is obtained by reversing the
roles of base and target space variables in these considerations.

1. Introduction

A characteristic feature of the classical equations of general relativity is the property of
general covariance; i.e that the equations are covariant under differentiable re-definitions of
the spacetime co-ordinates. In the first of a series of papers investigating a class of covariant
equations by Govaerts and the first author, which we calleduniversal field equations[1–
5] we floated the idea that these equations could be employed as a model for spacetime
co-ordinates. It is one objective of this paper to explore this idea in somewhat greater
depth. This is a purely classical discussion of a way of describing a co-ordinate system
which is sufficiently flexible to admit the general class of functional redefinitions implied
by covariance. It has nothing to do with quantum effects like the concept of a minimum
compactification radius due to T duality which rules out the the notion of an infinitely
precise point in spacetime. Here the discussion will remain entirely classical and will
explore the idea that the spacetime co-ordinates inD dimensions may be represented by
flat co-ordinates inD +1 dimensions, which transform under the conformal group inD +1
dimensions. There are, however, two ways to implement general covariance; one by the
use of covariant derivatives, and the other by exploiting properties of determinants. In a
second application the universal field equations may be regarded as describing membranes,
by reversing the roles of fields and base co-ordinates. Then the covariance of fields becomes
the reparametrization invariance of the new base space.

2. Multifield UFE

SupposeX(xi)
a, a = 1, . . . , D, i = 1, . . . , D + 1 denotes a set ofD fields, in D + 1

dimensional space. They may be thought of as target space co-ordinates which constitute a
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mapping from aD+1 dimensional base space co-odinatized by the independent variablesxi .
Introduce the notationXa

i = ∂Xa/∂xi, Xa
ij = ∂2Xa/∂xi∂xj . In addition, letJk denote the

Jacobian∂(Xa, Xb, . . . , XD)/∂(x1, . . . , x̂k . . . , xD+1) wherexk is the independent variable
which is omitted inJk. Now suppose that the vector fieldXa satisfies the equations of
motion ∑

i,k

JiJkX
a
ik = 0. (2.1)

This is a direct generalization of the Bateman equation toD fields in D + 1 dimensions,
[1], and may be written in terms of the determinant of a bordered matrix where the diagonal
blocks are of dimensionsD × D andD + 1 × D + 1 respectively as

det

∥∥∥∥∥ 0 ∂Xa

∂xk

∂Xb

∂xj

∑
λc

∂2Xc

∂xj ∂xk

∥∥∥∥∥ = 0. (2.2)

The coefficients of the arbitrary constant parametersλc set to zero reproduce theD equations
(2.1). The solutions of these equations can be verified to possess the property that any
functional redefinition of a specific solution is also a solution; i.e. the property of general
covariance. A remarkable feature of (2.1) is that the equations admit infinitely many
inequivalent Lagrangian formulations. SupposeL depends upon the fieldsXa and their
first derivativesXa

j through the Jacobians subject only to the constraint thatL(Xa, Jj ) is a
homogeneous function of the Jacobians, i.e.

D+1∑
j=1

Jj

∂L
∂Jj

= L. (2.3)

Then the Euler variation ofL with respect to the fieldXa gives

∂L
∂Xa

− ∂

∂xi

∂L
∂Xa

i

= ∂L
∂Xa

− ∂

∂xi

∂L
∂Jj

∂Jj

∂Xa
i

= ∂L
∂Xa

− ∂2L
∂Xb∂Jj

∂Jj

∂Xa
i

Xb
i − ∂L

∂Jj

∂2Jj

∂Xa
i ∂Xb

k

Xb
ik − ∂2L

∂Jj∂Jk

∂Jj

∂Xa
i

∂Jk

∂Xb
r

Xb
ir . (2.4)

The usual convention of summing over repeated indices is adhered to here. Now by the
theorem of false cofactors

D+1∑
j=1

∂Jk

∂Xa
j

Xb
j = δabJk. (2.5)

Then, exploiting the homogeneity ofL as a function ofJk (2.3), the first two terms
in the last line of (2.4) cancel, and the term(∂L/∂Jj )(∂

2Jj/∂Xa
i ∂Xb

k )X
b
ik vanishes by

symmetry considerations. The remaining term,(∂2L/∂Jj∂Jk)(∂Jj/∂Xa
i )(∂Jk/∂Xb

r X
b
ir ), may

be simplified as follows. Differentiation of the homogeneity equation (2.3) gives
D+1∑
k=1

∂2L
∂Jj∂Jk

Jk = 0. (2.6)

But since
∑

k JkX
a
k = 0, ∀a, together with symmetry, this implies that the linear equations

(2.6) can be solved by

∂2L
∂Ji∂Jj

=
∑
a,b

Xa
i d

abXb
j (2.7)
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for some functionsdab. Inserting this representation into (2.4) and using a similar result to
(2.5);

D+1∑
j=1

∂Jj

∂Xa
k

Xb
j = −δabJk. (2.8)

Then, assumingda,b is invertible, as is the generic case, the last term reduces to
∑

i,k JiJkX
a
ik

which, set to zero, is just the equation of motion (2.1)†.

2.1. Iteration

This procedure may be iterated; given a transformation described by the equation (2.1),
from a base space ofD + 2 dimensions with co-ordinatesxi to to a target space ofD + 1
with co-ordinatesYj which in turn are used as a base space for a similar transformation to
co-ordinatesXk, k = 1 . . . D the mapping fromD + 1 dimensions toD is given in terms
of the determinant of a bordered matrix of similar form to (2.2), where the diagonal blocks
are of dimensionsD × D andD + 2 × D + 2 respectively;

det

∥∥∥∥∥ 0 ∂Xa

∂xk

∂Xb

∂xj

∑
λj

∂2Xj

∂xj ∂xk

∥∥∥∥∥ = 0. (2.9)

The equations which form an overdetermined set are obtained by requiring that the
determinant vanishes for all choices ofλj Further iterations yield the multifield UFE,
discussed in [3], and the Lagrangian description is given by an iterative procedure.

2.2. Solutions

There are various ways to approach the question of solutions. Consider the multifield UFE;

det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 . . . 0 X1
x1

. . . X1
xd

...
. . .

...
...

. . .
...

0 . . . 0 Xn
x1

. . . Xn
xd

X1
x1

. . . Xn
x1

∑n
i=1 λiX

i
x1x1

. . .
∑n

i=1 λiX
i
x1xd

...
. . .

...
...

. . .
...

Xxd
. . . Xxd

∑n
i=1 λiX

i
x1xd

. . .
∑n

i=1 λiX
i
xdxd

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
= 0 (2.10)

whereλ1, . . . , λn are arbitrary constants, and the functionsX1, . . . , Xn are independent of
λi . The equations which result from setting the coefficients of the monomials of degree
d − n in λi in the expansion of the determinant to zero form an overdetermined set, but, as
we will show, this set possesses many nontrivial solutions.
The equation (2.10) may be viewed as a special case of the Monge–Ampère equation in
d + n dimensions, namely

det

∥∥∥∥ ∂2u

∂yi
∂yj

∥∥∥∥d+n

i,j=1

= 0. (2.11)

Equation (2.10) results from the restriction ofu to the form

u(yk) = u(x1, . . . , xd, λ1, . . . , λn) =
n∑

i=1

λiX
i (2.12)

† This calculation without theXa dependence of the Lagrangian can already be found in [1]; the new aspect here
is the extension to include the fields themselves, following the single field example of [6].
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where we have set

yi = xi i = 1, . . . , d yj+d = λj j = 1, . . . , n. (2.13)

Now the Monge–Amp̀ere equation is equivalent to the statement that there exists a functional
dependence among the first derivativesuyi

of u of the form

F(uy1, . . . , uyd+n
) = 0 (2.14)

whereF is an arbitrary differentiable function. Methods for the solution of this equation
are known [7, 8]. Returning to the target space variablesXj , this relation becomes

F


n∑

i=1

λiX
i
x1︸ ︷︷ ︸

ω1

, . . . ,

n∑
i=1

λiX
i
xd︸ ︷︷ ︸

ωd

, X1, . . . , Xn

 = 0. (2.15)

3. Exact solutions of the UFE

3.1. Implicit solutions

The general representation of a solution of this set of constraints which do not depend upon
the parametersλi evades us; however, there are two circumstances in which a solution may
be found. In the first case a class of solutions in implicit form may be obtained by taking
F to be linear in the firstd argumentsωi . Then

F =
d∑

i=1

fi(X
1, . . . , Xn)ωi = 0. (3.16)

It can be proved that this is the generic situation for the cases of two and three fields. In
general, provided there are terms linear inλi in F , as theXi do not depend uponλi , one
expects that as a minimal requirement the terms inF linear inλi will vanish for a solution.
Equating each coefficient ofλi in (3.16) to zero we obtain the following system of partial
differential equations

d∑
i=1

fi(X
1, . . . , Xn)Xj

xi
= 0 j = 1, . . . , n. (3.17)

The general solution of these equations may be represented in terms ofn arbitrary smooth
functionsRj , where

Rj(fdx1 − f1xd, . . . , fdxd−1 − fd−1xd, X1, . . . , Xn) = 0. (3.18)

The solution of these equations forXi gives a wide class of solutions to the UFE.

3.2. Explicit solution

There is a wide class of explicit solutions to the UFE. They are simply given by choosing
Xj(x1, . . . , xd) to be a homogeneous function ofxj of weight zero, i.e.

d∑
k=1

xk

∂Xj

∂xk

= 0 j = 1, . . . , n. (3.19)



A model for classical spacetime co-ordinates 249

The proof of this result depends upon differentiation of (3.19) with respect to thexi . A
particularly illuminating example is the case of spherical polars; ind = 3, n = 2 take

X1 = φ = tan−1

 x3√
x2

1 + x2
2

 X2 = θ = tan−1

(
x2

x1

)
. (3.20)

Then these co-ordinates satisfy (2.9).

4. Conclusions

A wide class of solutions to the set of UFE which are generally covariant has been obtained.
In order to adapt the theory to apply to possible integrable membranes, it is necessary to
interchange the roles of dependent and independent variables, so that general covariance
becomes reparametrization invariance of the base space [2]. In order to invert the dependent
and independent variables in this fashion, it is necessary first to augment the dependent
variables by some additionald − n fields Yk(xi), then consider thexi as functions of
Xj, i = 1 . . . n. Although, in principle,xi could also depend upon the artificial variables
Yk, k = 1 . . . d − n, we make the restriction that this does not occur (see [2] for further
details). In this case the variablesxj play the role of target space for ann-brane, dependent
uponn co-ordinatesXj . Since it is fully reparametrization invariant, it may play some part
in the further understanding of string theory, but this is by no means clear.
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